Quantum Error Correction of a Qubit Loss in an Addressable Atomic System
نویسندگان
چکیده
We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an addressable optical lattice. The qubit loss is first detected using a quantum non-demolition measurement and then transformed into a standard qubit error by inserting a new atom in the vacated lattice site. The logical qubit, encoded here into four physical qubits with the Grassl-BethPellizzari code, is reconstructed via a sequence of one projective measurement, two single-qubit gates, and three controlled-NOT operations. No ancillary qubits are required. Both quantum nondemolition and projective measurements are implemented using a cavity QED system which can also detect a general leakage error and thus allow qubit loss to be corrected within the same framework. The scheme can also be applied in quantum computation with trapped ions or with photons.
منابع مشابه
Fault-tolerant quantum error detection
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical...
متن کاملConcurrent remote entanglement with quantum error correction against photon losses
Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describ...
متن کاملError correction code for protecting three-qubit quantum information against erasures
We present a quantum error correction code which protects three quantum bits (qubits) of quantum information against one erasure, i.e., a single-qubit arbitrary error at a known position. To accomplish this, we encode the original state by distributing quantum information over six qubits which is the minimal number for the present task (see reference [1]). The encoding and error recovery operat...
متن کاملnt - p h / 99 12 10 4 v 1 2 2 D ec 1 99 9 Automatic Quantum Error Correction
Criteria are given by which dissipative evolution can transfer populations and coherences between quantum subspaces, without a loss of coherence. This results in a form of quantum error correction that is implemented by the joint evolution of a system and a cold bath. It requires no external intervention and, in principal, no ancilla. An example of a system that protects a qubit against spin-fl...
متن کاملQuantum Coherence Conservation by Growth in Environmental Dissipation Rate
Quantum coherence conservation is shown to be achieved by a very high rate of dissipation of an environmental system coupled with a principal system. This effect is not in the list of previously-known strategies of noise suppression, such as Zeno effect, dynamical decoupling, quantum error correction code, and decoherence free subspace. An analytical solution is found for a simplified model of ...
متن کامل